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ABSTRACT

This paper considers the CLT and SLLN for the empirical spacings process, indexed
by functions. A bootstrapped version of this process is shown to work and a strong
approximation rate established for this bootstrapped version.

1. INTRODUCTION AND PRELIMINARIES

Let Xy, X2,..., Xn_1 be independently and identically distributed (i.i.d.) ran-
dom variables (r.v.s) with a common continuous distribution function (d.f.) F
with support on R'. An important basic question of interest is whether these
observations are from a specified distribution function — the goodness of fit
problem. A simple probability integral transformation on these random vari-
ables, lets us equate the specified distribution to the uniform distribution on
[0,1]. Thus from now on, we shall assume that this reduction has been done
and under the null hypothesis of interest, the observations have a U(0, 1) dis-
tribution. A broad class of procedures for testing this null hypothesis are based
on the spacings, namely

Di:n = (Xi,n e Xi—l,n); = 1, 2, ceey Y, (11)

where 0 = Xon < Xip € -+ € Xpoin € X = 1 are the order statis-
tics from U(0,1) distribution. See for instance (Pyke, 1965, 1972; Rao and
Sethuraman, 1975; Shorack, 1972; Aly et al., 1984).

If Z;, i=1,2,..., is a sequence of i.i.d. exponential random variables with
mean 1, i.e., with d.f.

F()=1-¢77%, (1.2)
then it is well known (see, e.g. (Pyke, 1965)) that
n Zi &
{nDi:n}lzl 4 {?—} P (13)
n Ji=1
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where Z,, = Y7, Z;/n and ~ denotes equivalence in distribution. Indeed there
is a probability space (£2,.4, P) on which both D;.,, and Z; can be defined, so
that ~ in (1.3) can be replaced by = almost surely. Let

Fo(t) =n"! Xn:I (Z;: <) (1.4)
i=1
and
~ kiJ 7. _
E.)=n"1) T(= <t)=FE(2), (1.5)
> (% <t) =z

denote the empirical d.f. (e.d.f.) of the exponential sequence and the normal-
ized spacings sequence {nD;.,}7 ; respectively. We call

Gn(t) = Vn(Fu(t) — F(t)), t>0, (1.6)

the empirical spacings process. Denote by

vn() = v/n(Pa() = P()) (1.7)

and

where ﬁn, P,, and P are probability measures corresponding to ﬁn, F,, and F

respectively.

Limit theory for empirical processes has grown enormously over the last
few decades, as evidenced by the voluminous book by Shorack and Wellner
(1986). Recently the study of empirical processes indexed by sets or functions
has become very important and the results are quite general in scope. See,
for instance (Pollard, 1984; Sheehy and Wellner, 1992), etc. In Section 2, we
explore the central limit theorem (CLT) and the strong law of large numbers
(SLLN) for the spacings process, indexed by functions. It is easily checked
that the usual bootstrap method fails for the spacings process, so in Section
3, we introduce a resampling scheme for which the bootstrap approximation
is shown to work. This allows one to get critical values for any spacings
test statistics, which are known to be notoriously slow in converging to their
limiting distributions. Finally in Section 4, a bootstrap strong approximation
rate is derived.

2. SPACINGS PROCESSES INDEXED BY VC FUNCTIONS

For 1 < s < oo and for some probability measure Q on R4, we denote by
L*(R?, Q) the space of measurable real functions g on R? with ([ |g|° d@Q)V/*¢ <
oo. In most of what follows, @ will be empirical measure P, or the theoretical
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measure P. We denote the L*(R%, P,,) (pseudo) norm by

1/s
- lom = (/|-|Sdpn)

and we sometimes call this the “empirical norm” whose theoretical counterpart

1S
1/s
n-ns:(/«vdp) .

For F a class of functions, the envelope H of F is defined as

H = sup |f].
feF

Moreover, for F C L3(R¢, @), we define the covering number N,(4, Q, F) as
the smallest value of k such that there exists fi,..., fx in F, for all f € F

1/s
i, (/If = fjlsdQ) <4 2.1

The logarithm of N,(8,Q, F) is called the J-entropy of F for the metric

()"

LEMMA 1. Suppose F is a permissible (measurable) class with envelope H,
then

sup
ferF

almost surely iff both H € L\(R%, P) and

/ Fd(Pn — P)‘ — 0, 2.2)

n~llog Ny(6, P,, F) — 0,  P. (2.3)

Moreover if H € LY (RY, P) and (2.3) holds, then for all 6 > 0, the theoretical
covering number Ny(8, P, F) is finite, i.e.,

Ni(6, P, F) < 0. (2.4)

Proof. See (for example (Van de Geer, 1988, Theorem 2.2.1 and 2.2.2)).

THEOREM 1 (Strong law of large numbers). For a given class of functions
F, define
Fo={flct) | [®)€ F, ce[l-o1+al},

where 0 < oo < 1. Let H be the envelope for F,. If

e i A
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) n~1log Ni(8, P, Fa) — 0, P, (2.5)

(ii) 7}1( yexp (2= 2y) dy < 2.6

Vexp {1 ,Y) W< 6)
0

and

(iii) 95(c) = B{f(cZ:)} are continuous for any f € F,

then
sup [n~! if (é) - Pfl—0 a.s. 2.7
fer i1 \Z

Proof. When |1/Z — 1] < § € a, we have

sup [n~! (é) — Pf
feF = A
" Z; 1 1
< Ssu n_l (:l> = <:) + su (=> = 1 ‘
sup ;f z) "9 \Z)| sl (7 g95()
< sup n 1" f(cZ:) — g5(c)
fEF, ce[1-6,1+46] =1
1
-+ sup gf (:) —gf(l)‘
fer A
T 1
< sup |n1Y " f(Z:) — Pf|+ sup |g5 (f) —gf(l)’-
fE€Fa =1 feF

Since F, satisfies (2.3), so does F. By Lemma 1, (2.4) is true. For any § > 0,
there exist fi, fa,..., fx € F such that k < co and (2.1) holds true with Q = P
and s = 1. Note that

|95(0) — g5 ()| = |P[f(c2) - £(2)]|
<[Plfi(c2) = £i@)| + |P[£(c2) - fi(c2)]| + |P[£(2) - £(2)]

2

while

[e o]

/ [f(c2) — fi(cz)] exp(—2)dz

0

<ol / 1£@) — £;w)| exp(—y/0)dy

|P[f(cZ) - fi(cZ)]| =




(2.5)

(2.6)

@2.7)

- g5(1)

For any § > 0,
rue with Q = P

) - £(2)]],

)dz
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1/2
<a-o{ [116)- £l exo-na)
1/2
| [ 116~ 5 exp [2u1/2 171+ 0] e}
1/2
22| [ 56 explvta— i+ D)

1/2
« { / @) - 50)] exp(-v) dy}
< AV25172,

where

5 12
A= [m] /H(y) exp [y(a — 1)/(a + 1)]dy < co.
So for any ¢ > 0, choose § > 0 such that
|P[£(c2) - £(c2)]| + |P[£(2) - (D)) < AV*6' 2+ 6 < /2.

Hence combining the above, when [1/Z — 1| < 4,

sup
feF

5i(3)-

1Zf(Z) Pf

i=1

9¢; (%) gfj(l)‘ -+ =

+k max

< sup
f€Fa

Since k is finite, gy, (-) is continuous and |1/Z — 1| — 0 a.s., and note the fact

that
-1 Zi) _ s
Pl 50 (3)-ri (3-19) >}
<P{’l—1‘>5} <.
Z

By the Borel-Cantelli lemma, the theorem now follows.

o
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COROLLARY 1. Let F = {I(~00,z]: = € R}, then Fo = F and
n"liI (—_Z_i < m) — F(x)
i=1 Z

In order to study the central limit theorem, we need Pollard’s sparseness
condition. Let

sup — 0, a.s.

T

)
J(8) = J@, P, F) = / [2log (Na(z, P, F) /)" da.
0

LEMMA 2 (Pollard, 1982, 1984). Suppose that F C L*(R, P) is permissible.
Let the random covering number satisfies the uniformity condition: for each
n>0ande>0 there exists a v > 0 such that

lim sup P{J(y, Py F) > 1} <&. 238)
Then the central limit theorem holds for the class F.

THEOREM 2. Let F C L*(R, P) be a continuous permissible function class
such that Fo, satisfies (2.8). If

[ o) exp [yt e+ )] dy < o

where H is the envelope of Fa, then we have the representation

FLl(5)-re)

:l L ; 112~ P + Vi |3 (3)- o5 + 0D,

where o,(1) holds uniformly for fer

Proof. Since Fq satisfies (2.1), so does F. For any § > 0, there exist
f1, f25- s [k € F, such that k < o0 and (2.1) is true with @ = P and s = 2.
By Minkowski’s inequality

sup { / [f(c2) - £(2)) dp}l/2

feFr

<sup{ [ [z fj(cZ)]zdP}m

feF

2.9)

(2.10)
+ sup {/ [fi(c2Z) - fj(Z)]zdP}l/z

ferF

s { [ 11— 1) dP}m.

feF




F and
a.s.

ollard’s sparseness
1/2

dzx.
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2.9)
)| +0p(1),

d > 0, there exist
@Q =Pand s =2.

. (2.10)
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Note that for c € [1 — o, 1 + o],

[ [2)- i) o
=+ [ 16 - 56 ew(-v/9ay

0

S % /H(y)lf(y) — fi(w)| exp(-y/2)
X exXp [—y (H—La — %)] dy (2.11)

1/2
< 1Ea {/Hz(y) exp [ —y(1 — a)/(1+ a)] dy}

1/2
x { [ 156~ 10 exp(-v) dy}
< (C - 2)4,

where 0 < C — 2 < oco. So there exists a §1(6) > 0 such that if |c — 1| < 1,

sup { / [f(cZ - f(Z)]zdP}l/z <C§

or
[C8] = {(fl(t), @) | f1, f2 € Fa, / (fi — fo)*dP < 05}
> {(fet), FE) | £ € F, le—1] < 81(8)}
= [41]
and

P{ sup |1 (2/2) = 1 (1(2))| > n}

< P{ sup |va (£(2/2)) — va (F(2))| > n,11/Z - 1] < 51}
fer
+P{|1/Z — 1| > 61} (2.12)
<P{ s[?;])|vn(f(cZ)) —va(£(2)| > n} + P{L/Z - 1] > &1}

< P{ sup lvn (£1(2)) — vn(f2(D))| > 77} +P{I1/Z - 1] > &}.

By the stochastically equicontinuous property of {v,} (see (Pollard, 1984,
p. 139-150)), for n large enough, the right hand side of (2.12) can be arbitrarily
small. Hence

v (£(Z2/2)) — vn(£(2))| = 0p(1)

uniformly in f € F,
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i.e.,
\/—Z £(Z:/Z) - 9:(1/2)) - Z f(Zi) = Pf(Z)] = 0p(1).

COROLLARY 2. Under the conditions of Theorem 2, if

‘gf(l +1) —g;(1)
t

lim sup
t—0 feFr

- 50| =0,

then

n

TS 1/ D) - PA@)] — By -+ 0) [ £ 0By,

i=1
where By is a Brownian bridge indexed by F.

This result can be generalized to empirical processes subject to perturbations
and scale factors, the more general setting described in (Rao and Sethuraman,
1975).

3. BOOTSTRAPPING FOR THE EMPIRICAL SPACINGS PROCESS

Let X1, X5, ... be ii.d. with distribution P on (R, .4, P) and let

P,=n"1! ZI(Xi <z
i=1

be the empirical measure of the first n X’s. The nonparametric bootstrap
proceeds by sampling from PY = P,(-,w). Suppose that X>,,..., X} are
ii.d. with the distribution P¥ on (2, A). Let

m
Py =m > I(X;;<x),  Vpm=vVm(Pr—P).
i=1

Thus X*,..., X}, is the “bootstrap sample”,- Py, is the “bootstrap empirical
measure” and an is the “bootstrap empirical process”. Under very weak
conditions, Sheehy and Wellner (1992) show that bootstrap approximation for
empirical processes indexed by functions works. However, for the empirical
spacmgs processes the usual hootstmp procedure fails, i.e., if we resample
Uy,...,Ur _, from Fo(t) = n~' 3" | I(U; < t), where U are uniform distri-

bution random variables. Construct “bootstrap spacings”

* * * .
8t = Uprn — Ui 1. 1i=1,2,...,m,
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where 0 = Uy < Up < ... < Upin = 1 are the order statistics of
Ufs--+»Up,. Then the “bootstrap spacings process” is

n=VIRO-FOL  Fo=mS 10 < £).
i=1

In the bootstrap sample, the possibility of ties is high and this makes too many
bootstrapped spacings to be zero. Thus, it can be checked that vy, and o,
have different limit distributions and the usual bootstrapping fails. Hence we
suggest the following modified resampling scheme:

Let Z{,...,Zy beiid. random variables with the distribution function ﬁn(t),
the empirical spacings processes defined in (1.5) and let

m
Fr@®)=m™3"1(z} <),
i=1

e n Zx o
Fr@®y=m=1N"r1 _—1<t)=F;;,Zt.
HO=m 31 (2 <o) = my(zy
We define the modified “bootstrap empirical spacing processes” as
Vi =Vm(Fn @) - Fu(), o7 = Vim(Fr(t) - Ba)). (3.1)

We will now prove that this modified Bootstrap empirical spacings process 3.1
and the empirical spacings process have the same asymptotic distribution.

LEMMA 3 (Shechy and Wellner, 1992), Suppose that F is nearly linearly
Deviation Measurable for ({P,}) (see (Gine and Zinn, 1984, p. 935) for a
definition) and that

) His {P,} uniformly square integrable,
ii) (F,H)isa sparse,
i) [P, — Pollg 50 as n— 00,
Where G = FUF2U F2 gnd 72 — {FPlfer}, 72 = {(f-9P|feFge

F}. Then F CLT{Po}ns0) (ie., central limit theorem holds uniformly with,
respect to P,,).

LEMMA 4. Under the conditions of Lemma 3, if F is a continuous function
class, then

Hﬁn—P”g /2—>0 as n —s oo,

Where goz/Z :‘7:01/2 U]:i/z U]:Ii/z.

e
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Proof. We only need to prove

|Po—Pllgo= sup [(Ba—P)fi—F£)*|—0 as n-— oo,
f1.f26€F )2

since the other conditions are the same. Let
2
gf,h(cl, 62) = 2 [f(ch) - h(CzZ)] .
When ¢;/Z € [1 —a,1+ @) and ¢3/Z € [1 — o, 1 + a), we have

sup  |(Pn — P)(f1 — fo)’]
fu.f2€F o/
= sup sup |(Pu = P) (f(a2) ~ h(e22))’|
fLhEF ci,00€[1—a/2,1+a/2]

—IZ F(c12:/Z) — h(c2/Z)])”

< sup
fhEF ey c0€[1— a/2 1+a/2]

- gf,h(cl/i, 02/7)

+ sup sup |gf’h (61/7, 62/7) — gf,h(cl, Cz)|
fheF cr,c€[1—a /2,14 /2]

(.2)

< sup

—1 N ‘ 2—
LN L9 ECARICS STt

+ sup sup |gf,h (61/7, 02/7) — gf’h(cl,cz)|.
fLheF ci,e0€[l—a /2,14 /2]

The first term of (3.2) goes to zero by the Theorem 12 in (Pollard, 1982).
We need to prove that the second term of (3.2) also goes to zero. For a €
[1—«/2,1+ «/2], consider

|97,n(c1a, c20) — g5 nlct, )|
= |P[f(c1a2) - W(c202)]* = P[fi(ac1 Z) — f;(ac22)]”
+ P[fiac1 2) - fi(acaZ)]” - P[f(c12) ~ M2 2))?
+ P[fi(c12) - fi(22)]* - P[fic12) — fi(22)]’
< P{[|f(c1a2) — fi(c1aZ)| + |Mc2aZ) — fi(c2aZ)||4H(Z)}
+ P{[|f(c12) - fe12)| + |M(c2Z) — fi(c22)|]4H(Z)}
+|P[fiac12) - fi(ac22)]* = P[fi(c1Z) — f,(e22)]’).

Rest of the proof is similar to that of Theorem 2.2.
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THEOREM 3. Under the same conditions as in Theorem 2, for almost all
sample sequences X1, X3, ..., X,

S (35 (3)

=1

1S 1 — 00,

= Jm [1 S5z -0ty F(2:/2) (33)
i=1 i=1

VM | — Z; Z;
e +T{;f<77*>_f<7)
where 0,(1) is uniform for all f € F.

)2| Proof. We show that Fo /2 € CLT({Pn}n30) by using Lemma 3.
i) Let Hi() = supye Fapr |£()| be an envelope for F, /. Since H(t) is

+0,(1), as.

12
/Z)] sup |Hi(ct)| = sup sup |f(ct)| < H@®),
ce(l—a/2,1+a/2) ce(l—a/2,1+a/2) f€F a2

(3.2) = -
then Hi(t) is a.s. {P,} uniformly square integrable. In fact when |1/Z — 1] <

C1, 62)‘ a/2,
P HEI(Hy > N =n"' Y H}(2:/Z)I(H1(2:/Z) > N)
<n™' Y HXZ)I(H(Z) > N) — P(HI(H > X))  as.

1, 2))|-
iii) is correct for G, , by Lemma 4. Then by Lemma 3, ¥, € CLT({F,}).
(Pollard, 1982). For any § > 0, there exists a 61(0) > 0, d1 < /4 such that
o zero. For a € 5 .
sup  P(f(cZ)— f(2))" < §/2. (3.4)
FEF, |e—1}<6;
Note that
)
2 P{ s v (FC2/Z ) - v ) >
)] fer
2 — — *
| gp*{sup i (F(ZIZ")) v (F(B)| > . |1/Z ~1|<5l}
[|4H(Z)} fer
H(2)} +P{|1/Z" - 1] > &1}
2
2. < sp (i) (@) > 0}
fEF, c€[l—a/41+a/4]

+P{|1/Z" - 1] > &}.
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By Lemma 4
sup | (£(2) - £(2))|°
feF, ce[l—a/4,14+a/4]
— sup |P(£(c2) - 1(2))|” < 6/2,
feF, c€[l—a/4,1+a/d]

i.e., the equicontinuity holds for the process. By the equivalent property be-
tween F,;; € CLT({Pn}n30) and the asymptotic equicontinuity of F, /> uni-
formly in P, (see (Sheehy and Wellner, 1992)), the right hand side of the above
can be made arbitrarily small for almost samples. Hence, we have

vi(f(2/Z7)) — v (f(Z)) = 0p(1) as. uniformly for f € F.

and we have the desired results.

It is easy to see the bootstrap version of spacings processes indexed by
functions has the same asymptotical distribution with the spacings processes.

4. BOOTSTRAP STRONG APPROXIMATION RATE

This section is based on the results of Aly et al. (1984) where they discuss the
k-spacings processes. For convenience we restrict attention to bootstrapping
the simple spacings process (with k = 1).

_LEMMA 5 (Aly et al., 1984). Define a sequence of Gaussian processes
{B(): 0<t < oo} on(R,A,P) such that

sup |0n(t) — B(F(®))| = O(n~*(logn)**) a.s.
0<gt<oo
and
P{ sup |0n(t)—B(F())| > An’1/4(logn)3/4} <Cn ¢ forany €>0,
0<t<oo
where

Da(t) = Vn(Ea(t) — F(t)), B(t)=B@t)+ WF'®)f(F~l(t)) (4.1)

with W = fol F~1dB ~ N(0,0?) and B(t) is a standard Brownian bridge.
LEMMA 6 (Dvoretzky—Kiefer—Wolfowitz inequality).

P(sup |Fat) — F(t)| > d) <crexp(-cnd®), d>0, (42)
t

where c1, ¢y are positive constants.
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Proof. We have

P(sn:p \B.(t) — F(t) > d)

< P(s&p |Fa(Zt) - F(Z8)| > d/2) + P(sup|F(Z2) - F(t)| > d/2),

put F(Zt) — F(t) = (Z — 1)tf(nt), where f(-) is the density function of expo-
nential (1), n lies between 1 and Z. Note the fact

sup tf(nt)| = A < oo.
In—1|<d<1, —co<t<oo

P(sgp |F(Zt) — F(t)| > d/2)

< P(Z 1] > d/2) + P(sup|Z - 1| tf(nt)] > d/2,
t

Z-1]<d/2)
<P(Z -1 >d/2) + P(A|Z - 1| > 4/2).

For exponential(1), the moment condition holds for Bernstein’s inequality (see
(Shorack and Wellner, 1986, p. 855), we have

P(|Z - 1| > d/2) < exp (—naid?). (4.3)
So by the D-K-W inequality for empirical distribution function
P(sgp |\Fo(Zt) — F(Zt)| > d/z) < P(sltlp |Fa(t) — F(t)| > d/2)
< ¢z exp ( — end?).

Combining the above inequalities we have the result.

LEMMA 7. Assume that 0 < lim,_,., inf(m/n) < lim, e sup(m/n) < oo.
Then

1

Proof. Let 11,m2, - . ., m be iid. U(0,1), then F%(t) = Umn(Fn(t)), where

> An~Y?(log n)z} <Cn™¢  (4.4)

Jm(Z* 1) —/tdB(F(t))

and
P{|Z" — 1| > An"'*(logn)"/*} = O(n™°). 4.5)

iy & 1 &
Um(t)Z— I(Ui<t), om(t) = — IUi<t)—t.
m; ® = —7=>_ I ]

i=1
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Note that

7*-1:7 Fit) — Fu(®) = 7 Frt) - F(t)] d
0

o] 1 ool R
m (Fa(t) — Fu(t)] d — | o (Fa(t)) dt

and

‘m(?* ~1) +/B(F(t)) dt.
0

/ (em (Fal®)) — BEF()) dt
0

Ziny/Z

/ (am (Fa(t)) — B(F(@)) dt| +
0

y // ] (0 — B(F(¢)) dt‘
A

sup |am (Fu()) — B(F(2))]

2 B(F(t))| dt.
Z ogt<oo (F®) |

Z('n /
Observe that

P{Zmy > clogn} =1~ P*{Z < clogn} =1 - {1-n"°}" = O(n"°)

when ¢ > 1. (In fact P(lim, .o Zn)/logn = 1) = 1, see (Galambos, 1978,
p. 224). Rest of the proof is similar to that in (Aly et al., 1984, Lemma 3.1
and 3.2.).

LEMMA 8. Under the same conditions of Lemma 7,

P{‘\/E(ﬁn(7*t) _Ra®) — ) / tdB(F(t))‘
0 4.6)
> n‘1/4(logn)3/4} =0(n"%).

Proof. We have
Vm[Fo(Z7t) — Fa(t)
= vm[F.(Z"t) -~ F(Z"t)] - vm|F, (t) Ft)] + vm[F(Z"t) — F()]
m/n[on(Z"t) = on(®)] + Vm[F(Z"t) - F(t)]
= m/n{[pa(Z"t) = B(F(Z"1))] - [pn(t) - B(F(t))]}
)]+

+mn[B(F(Z"0) - BF®)) + vin(F(Z"t) - F).

m




dt

F.(t)) dt

F(t)) dt

)| dt.

"= 0m)

alambos, 1978,
84, Lemma 3.1

(4.6)

(Z7t) - F)
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By one-term Taylor expansion, we have

b

|F(Z7t) — F@t)| = ftn)t|Z" — 1

where 7 lies between 1 and Z". Let A,(8) = {w: [Z" — 1| < &}, n large
enough to make An~!/2(logn)!/? < §, then P{AS(6)} < Bn* and on A,(J),
we have

tftn) < sup tf(tn) = M < oc.

1-6<n<144,0<t< 00
Then by using Lemma 7,
P{ sup |F(Z"t) - F@t)| > Mn_l/z(logn)l/z}

0<t<oo

< P{45(9)}
s P{An(é) N { sup |F(Z"t)— F(t)| > Mn—l/Z(logn)l/Z}}

0<t<oo
Cn™ ¢+ P{|7* -1 > An_l/z(logn)l/z}

<
< 2Cn ¢ for n large enough.

Note that from (4.1)

B(F(Z7t)) - B(F(t)) = B(F(Z"t)) - B(F(t) + Wi{Z" F(Z"t) — (1)}

Just like the proof in (Aly et al., 1984, Lemma 3.2) it is easy to prove
P{|B(F(Z"1)) - BF®)| > n"4(logn)*/*} < cn~s,

[0n(Z"t)-B(F(Z"t))] - [oa()-B(F®)]| > n~1/4(1ogn)3/4} < Cn®.

Py

Finally,

2

VI{F(Z"t) - F®)} = vmf@t)t(Z" — 1) + vmf' @t (Z" - 1)",
it is ecasy to get the result.

THEOREM 4. Assume that 0 < lim,,o inf (m/n) < limp_e sup (m/n) <
co. Then we can define a sequence of Brownian motions {B(t), 0 < t < 1}
such that

P{ sup |v/m(En(t) — Eu(®) — B(F(8))| > An~4(log n)3/4}

0<t<oo
—&
<Cn™F,

@.7)

for any € > 0.
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Proof.
VI(En(t) = Fa(t)) = Vm(Fp(Z7t) = Fr(t) + Vm(EFn®) — Fa®))-

Vi (Fr (@) — Fa(®))
= VI {Un (B (Z 1)) = Un(Fa(®) } + Vi{Unm (Fu(?) - F, (t)}

Bl N ot 4.8)
= {am(Fa(Z 1) — am(Fa®)) } + Vm{Fo(Z"t) — Fu(t)}
+ am (Fa(®))-
Using the Komlds, Major, and Tusnddy’s construction, we can define a se-
quence of Brownian bridges B(t) which are independent of (Z1,. .., Zy,) such

that
P{ sup lam(®) - BO)| > Aun""*(logn)?} < Bun™*  (49)
o<1

for any € > 0 (see (Csorgd et al., 1986, p. 158)). By Theorem 2c of Burke ef
al. (1981) (for example (Csorgd and Révész, 1981, Lemma 1.1.1)), we have

P{ sup  sup |B(s)—DB(s+1)| >A13n—1/4(1ogn)3/4} < Bisn—° (4.10)
0<s<1—hy, 0Kt<hy

with hy, = A1on~1/2, By Lemma 6, we have

P{ sup | Fu(t) — F(t)] > Aran~'?(log n)l/z} < Bppn~©
t

Note the fact that
20

<sup |[Fu(Z7t) — F(Z™t)| +sup |Fu®) — F(t)| +sup |[F(Z't) - F(t)|
t i t

sup |F(Z™t)
t

— F()|.

< 2sup | Fu(t) — F(t)| +sup |[F(Z"¢)
t t

Combining the above inequality with Lemma 8, we have

P{ sup |am (ﬁ"(7*t)) — Oy, (ﬁ"(t))| > An~4(log n)3/4} <Cn™*
t

and

P{ sup |om (Fa(®)) — B(F(t))| > Ain="*(log n)3/4} <On~  (4.11)

0<t<oo

for any € > 0 and some constants. From this, the desired result follows.
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(Z7t) - F)|

} <Cn™*

Cn=¢  (4.11)

It follows.



